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ABSTRACT"

Our numerical results demonstrate that both Fraunhofer and Fresnel diffractions provide good approximations to
forward scattering by elastic spherical shells and rigid/soft spheres, for nondimensional frequency values
20 < ka < 80, and scattering angles 00 < 0 < 100. There are only small differences among the Fraunhofer, Fresnel,
and rigid/soft predictions for differential scattering cross sections. They arise mainly from the slightly varying
degrees of compression (in angular space) of one pattern relative to another. The magnitudes of the maximums
predicted by the four methods are in good agreement, but the minimums do not agree. Calculations for 1%, 5%,
and 10% spherical steel shells indicate that variation of shell thickness has only a small effect on forward scattering.

1. INTRODUCTION

Forward scattering has been used in particle sizing in optical' and acoustic 2 measurements. Both Fraunhofer
diffraction and Fresnel diffraction3 have been used as predictive tools in calculations of scattering from objects of
suitably small sizes. Since acoustic waves do penetrate elastic objects, but the Fraunhofer and Fresnel diffractions
do not include elasticity, the validity of these physical optics approaches even in forward scattering may be ques-
tioned. In the present report we compare predictions of forward scattering from elastic spherical shells and rigid/
soft spheres using known exact formulas,4 to Fraunhofer and Fresnel predictions.

The methods of physical optics have been applied to acoustic scattering problems by many authors 2'5-12 with
varying degrees of success. The most well known of these techniques is the Kirchhoff approximation (Ref. 5 and
references therein). It assumes that the incident field and its normal derivative are unperturbed in an open aperture,
and zero on the shadow side of a scatterer. Further, the outgoing signal on the insonified side of a scatterer is taken
to be the incident signal multiplied by its plane wave reflection coefficient at every point on the scattering surface.
The application of these assumptions to backscattering from semi-infinite plates,5 and from spheres and
cylinders"- have shown that the Kirchhoff method is unreliable in these instances.

Applications of the Kirchhoff method to forward scattering problems have been more successful. Forward scat-
tering from a semi-infinite plate has been discussed by Officer." Pierce and Hadden find' 0"' that for small forward
angles, the Kirchhoff method provides a good approximation to scattering by a wedge. This result is independent
of the wedge angle. Hunter, Lee, and Waag 2 have experimentally measured forward scattering patterns of single
nylon filaments. They demonstrated that the patterns were well explained by a Huygens construction, calculated
numerically. The Fraunhofer and Fresnel calculations 3 discussed below are subsets (subsets that contain all the
important elements) of the Huygens construction. In an earlier work,' 2 this author compared the total field due to
an infinite rigid cylinder at small forward angles calculated using exact formulas,iS to that calculated using the
Kirchhoff method adapted from Officer9 for an opaque swrip. The two predictions were in good agreement. For
forward scattcring, the Kirchhoff method is identical to Fresnel diffraction.3"' Since the concepts of Fresnel diffraction
and Fraunhofer diffraction are well established as special cases of a unified theory based on the Fresnel-Kirchhoff
nfintegral, 3 we prefer to retain the Fresnel label instead of the Kirchhoff label. We show that in the examples
considered here, both Fraunhofer diffraction and Fresnel diffraction provide good approximations to the scattered
field as well as the total field due to elastic spherical shells and rigid/soft sphcres.14
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2. EXACT FORMULAS

The well-known exact formulas4 for spherical elastic and rigid/soft scatterers, are summarized in the present
section. For spherical scatterers, the complex pressure of the incident plane wave can be written as

pine = exp (ikrcosO), (,)

where k is the wave number, r is the distance of the observation point from the center of the sphere, and 0 is the
spherical polar angle, with 0 = 0 for forward direction. Similarly for the scattered signal,

= -.&Jxpilr) j(2n + l)APl (Cos 0) = (+)exp(ikr)f (5).(2

Here, Pn (cos 0) are the Legendre polynomials, and the coefficients An are determined from elastic boundary
conditions.' The formulas are for the asymptotic case kr >> 1. For rigid/soft boundary conditions,"

An (rigid) = - j'.(ka)/h'I(ka), and An (soft) = - jn(ka)/bN(ka). (3)

Here the j, are the spherical Bessel functions, and the h, are the spherical Hankel functions of the first kind.

The differential scattering cross section in any direction Q2 is given by

-f I n f(fl) (4)

The total field at any point is given by the coherent sum of incident and scattered fields as

P lot = Pine + P,,,, . (5)

3. PHYSICAL OPTICS FORMULAS

In the physical optics approach to the forward scattering problem, we replace the scattering object (sphere) with
an opaque screen having the same area of cross section. Consider the case when the wavefront due to the incident
signal coincides with the screen (Fig. 1). We assume the signal and its derivative on the shadow side of the screen
to be zero, as in the Kirchhoff method. The signal at every other point on the wavefront is assumed to be unperturbed.
The complex pressure at any forward point is then given by the Fresndl-Kirchhoff integral3

Am = C' i1 exp [ikf (4, 71)]d~dfl (6)
insonified

where k is the wave number, the function f(4,71) = [(r-r') + (s-s')] (Fig. 1), and the three-dimensional Cartesian
coordinates of P', Q, and P are given by P'(x',y',z'), Q(•,1i,O), and P(x,y,z). For incident plane waves of unit strength
and small forward scattering angles, the constant C' is given by3

[ ik__ exp(iks)] (6a)C= 2nt s' J"

When the coordinates x'. y', 4, I], x. and y are small compared to both r' and s', we can expand f(4,rl) in a powcr
series as

x 4 + y ' x, T+ y + 2 71,
f ( 4 , 71 ) = , r 's- - - -+ I 'T 1. + +1 - - 7

-,,,

r S 2+

174 /SPIE Vol. 1702 Hybrid Image and Signal Processing III (1992)

A,'



x

r p

yX

(Source) (Receiver)

Y z
avefront

Fig. 1. Source, receiver, coordinate axes, and the position of the wavefront as it
coincides with the screen.

The integral in Eq. (6) runs over the entire insonified region, viz. the wavefront extending to + / - in • and 71,
but excluding the opaque screen. (In the following we only evaluate integrals over a finite region of the wavefront,
consistent with the condition of smallness of 4 and q relative to r' and s'.)

For better physical insight, let us rewrite Eq. (6) as

p•~~ =C"j"Jexp[ikf(k, rl)]dkdq -C' jjexp[ikf(k, 7l)]d•,drl -p,, - pdi, (8)

dire

where the integral labeled "disc" runs over the opaque screen. Equation (8) can be understood as a result of
Babinet's principle. 3 The first term pi., in Eq. (8) represents the field due to the entire infinite wavefront, the field
in the absence of any scatterer. The second term Pdis in Eq. (8) represents the field due to the complementary
geometry, an insonified opening in an infinite opaque screen.

The terms p,. and pi., in Eq. (8) have exactly the same meaning as the quantities pt, and pi,. in Eq. (5) Therefore,
the quantity (-Pdis,) in Eq. (8) corresponds to the term p.,, in Eq. (5). If both the diffraction theory and the
scattering theory make identical predictions, then for the same incident field pi,, in Eqs. (5) and (8), (-pd) of
Eq. (8) will be equal to P.u, of Eq. (5) Following the scattering theory definition of differential scattering cross
section in Eq. (4), we define the corresponding quantity for diffraction theory as

2

r " 2 • (9)
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When the quadratic and higher terms in f(4,ij) in Eqs. (6) and (7) can be ignored, we have the case of Fraunhofer
diffraction. 3 Born and Wolf3 demonstrate the condition for this as

(s + rn) ,x' '>> 7 (10)

where X. is the wavelength. When the quadratic terms are important, we have Fresnel diffraction. 3

Let us now discuss the calculation of pi, and pd• of Eq. (8) under the two approximations. Evaluation of pdi
using Fraunhofer approximation poses no conceptual difficulty. Thus within the Fraunhofer approximation, using
some change of variables and straightforward integration we obtain3

pd, (Fraunhofer)= C' J1 exp[- ik(x'k+,Y'l x4+ yn)]d~dl
disc

- _ Fexp(iks') " 2[-2J (ka sin 0)1(=-2 L ks ' J (ka)' I kasin 0 "(l

Here 0 is the angular separation of a point on the diffraction pattern measured from the forward direction, and is
the same as the angle 0 in the previous section.

To calculate Pdi,, using the Fresnel approximation, Born and Wolf3 choose a coordinate system such that the
linear terms in f(4,11) are identically zero. Then

f I) L 1 I.+ 4)Cos2 8+ 2) +- ... (12)

where 8 is the (small) angle between the line P'OP and the normal to the opaque screen. Defining new variables u
and v, a new constant b', and indefinite integrals C., and S,, as

.M2= t I + 2 cos28 (I 3a)

X 2= I (1+ )i 2 (1 3b)

b - - (13c)
k(/r+ r Is') cos+

C S I1cos[2(u2 + v2)]dudv (13d)

S 13- Jsin [2!( u2 + v2)]du dv, (13e)

we can write

Pde (Fresnel) =C'b' 11 expii2(u2 + v2)]dudv

= _ i exp(iks )[C,•(disc) + iS .,(disc). (14)
2
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Here, (disc) on the right hand side of Eq. (14) means that the integrals run over the opaque screen. Using trigono-
metric expansions of cosines and sines we obtain

C ,(disc) =2 EU co(~u)q~vnut(u)]du -2 I sin (_Mu2)S[v 1 u)] du (15a)
disc dinc

S V(disc) =2 1 sin(._.u2)CIv.(u)]du + 2 1 co{su 2)S[ v.(u)] du (15b)
disc (2disc4

whcre the line integral in the variable u runs from umi, to u..u (Fig. 2). The quantity v..~ is given by

v m..=[a .2(U + U 0) ]1/ (16)

where

is the reduced radius of the sphere in u-v space. The quantity u0 is the (positive) distance in u-v plane between the
origin of the coordinate system and the center of the opaque disc (Fig. 2). This distance is also equal to the distance

U

u=O .......... V
0

Umax =-Uo + a .......

u= Uo..

u

Vmin=-Vmax Vmax

Y Fig. 2. The circular opaque screen (projection of sphere)
in the u-v plane, as seen by an observer moving in the
direction of the incident signal.
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in the observation plane (also measured in reduced space) of a point on the diffraction pattern from the center of
the pattern. Here we have approximated cos d by unity, using the fact that 8 is very small. The quantities C and
S are the well known Fresnel integrals 3 given by

C(X) = Cos EU2)du 08a)
I

S(x)= Jsin(qu 2 )du .(1 8b)
0 2

Formulas's to calculate C(x) and S(x) are given in Appendix A. We calculated Cuv (disc) and S.,, (disc) of Eqs. (14)

and (15) by numerical integration using Simpson's rule.

The incident field pi., is a plane wave of unit strength, given by

pi,, (Fraunhofer) = exp (iks' cos 0) (19)

in polar coordinates (s', 0), used in the Fraunhofer calculation. As mentioned above, the Fresnel calculation uses a
special coordinate system 3 in which the diffracted field is calculated on a plane perpendicular to the incident signal
direction, at distance s' from the scatterer. For this, the incident signal is given by

pi, (Fresnel) = exp (iks') (20)

4. NUMERICAL RESULTS

Here we present the results of our calculation of differential scattering cross section and the total field based on
the Fraunhofer and the Fresnel approximations. These results are compared with corresponding results obtained
using exact formulas4 for elastic spherical shells and rigid/soft spheres. In all examples, we have calculated the
diffraction pattern in the far field, with (s/X) = 1000.

Figures 3-5 show the differential scattering cross section da/dfl plotted vs. the forward scattering angle 0, for
ka = 20, 40, and 80. There are only small differences among the Fraunhofer, Fresnel, and rigid/soft predictions for
each case. They arise mainly from the slightly varying degrees of compression (in angular space) of one pattern
relative to another. The magnitudes of the maximums predicted by the four methods are in good agreement, but the
minimums do not agree.

Figures 6-8 show the squared magnitude of the total field P% plotted vs. the forward scattering angle 0, for
ka = 20, 40, and 80. The total field p, was calculated for an incident field pi, of unit strength. In each case,
agreement among the Fraunhofer, Fresnel, and rigid/soft predictions is remarkably good. The diffraction pattern
shows regularly spaced maximums and minimums. In all cases the asymptotic value (as 0 increases) is 0 dB,
consistent with the normalization of the incident signal strength to unity, and the fact that the scattered field strength
falls off rapidly for increasing 0. The unit normalization of the incident signal also explains why the oscillations are
centered at 0 dB.

The effect of shell thickness on forward scattering is illustrated in Fig. 9 for differential cross section da/dfO, and
in Fig. 10 for the total field p,., for spherical steel- shells of thicknesses 1%, 5%, and 10%. The ka value is 20
respectively. Fresnel and rigid/soft predictions are shown for comparison. Shell thickness has only a minimal effect
in these examples.
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Fig. 6. Variation of the total acoustic field strength with forward
scattering angle 0 for spherical rigid/soft spheres, compared with
Fraunhofer and Fresnel diffractions. ka =20.
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results, and Fresnel diffraction. ka =20.
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S. CONCLUSIONS

Our numerical results demonstrate that both Fraunhofer and Fresnel diffractions provide good approximations to
forward scattering by elastic spherical shells and rigid/soft spheres, for nondimensional frequency values
20 < ka < 80, and scattering angles 00 < 0 < 100. There are only small differences among the Fraunhofer, Fresnel,
and rigid/soft predictions for differential scattering cross sections. They arise mainly from the slightly Varying
degrees of compression (in angular space) of one pattern relative to another. The magnitudes of the maximums
predicted by the four methods are in good agreement, but the minimums do not agree. Calculations for 1%, 5%, aw
10% spherical steel shells indicate that variation of shell thickness has only a small effect on forward scattering.
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APPENDIX A. FORMULAS TO CALCULATE FRESNEL INTEGRALS

For x < 2.55 we have used' 5

- (- 1)"(n /2)2nX4+

Cx = 0 (2n)!(4n + 1)

S(x) = I,( )•t/)"14+

n=0 (2n+ 1)!(4n + 3)

For x > 2.55 we have used15

C(x)= I1 + f(x)sin.i~x2)-g(x)cos(2T.x,)
cos(2 _ i 2x

S(x) = -f(x)co x2  (x)

"- (- I)ml. 3.... (4m- 1)
irxf(x) = I+ Z 2m

m1 ( nx2)

7tx~x) _1 +-• (- 1)ml. 3....(4m +1)
,nx m (,rx 2)2+
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